
Copyright 2013 Paladin Group, LLC Brian Brzezicki

Lesson 3: Busses and Address decoding Version 1.05

Busses:

In the previous lesson we discussed the address bus. You might wonder "what exactly is a bus?", and

that's a good question. A bus is simply a group of one or more wires on which electrical signals are

transmitted. Buses usually have multiple wires, in the case of the Atari Centipede PCB and the 6502

CPU, there are 16 wires that make up the address bus. Each wire carries it's own signal (0V or +5V) and

the combination of all the wires represent some information that needs to be transmitted. One other

feature of a bus is that multiple different devices are attached to a bus. At any given time one or more

devices can READ data on the bus. However only ONE device can ever write data to the bus at any given

moment in time. If multiple devices try to write data to the bus, the signals corrupt each other and the

data is invalid. Those of you who are familiar with old Ethernet networks that used hubs, this is exactly

what happened when a collision occurred. Old hub based networks are a bus topology, and all hosts can

read the data on the network, but only one is allowed to talk at any given time without causing issues.

Busses and Tri-state devices:

If you were paying attention you may have noticed a few conflicting points.

1. TTL chips provide/send signals by pulling the ouput wires to GROUND, or setting the output

wires to +5V.

2. Busses often have more than 1 device/chip attached.

You might be asking the question “if multiple devices are outputting either +5V or GROUND, and they

both are signals, when aren’t all the devices talking and causing issues?” The answer is YES! If all a

device can do is output a +5V or GROUND which are both valid signals, then each device is trying to alter

the bus to whatever state it’s outputting, and that’s going to cause issues. However, there is a solution

to this problem.

Tri-state devices:

To solve the problem described above, many TTL devices are actually tri-state devices. Rather than being

able to only output 2 states, these devices have 3 states

 Chip enabled and output HIGH (+5V)

 Chip enabled and output LOW (GROUND)

 Chip disabled and output HIGH IMPEDANCE (often written Z)

When the chip is enabled it outputs one of the valid TTL logic states (+5V or GROUND). However the chip

can be disabled. When it is in this state it goes into a high impedance mode which effectively removes it

Copyright 2013 Paladin Group, LLC Brian Brzezicki

from the bus. It is important to understand that high impedance is NOT 0V (GROUND) nor is it +5V, it is

NEITHER state. In fact from the rest of the circuits point of view when a chip is in the high impedance

state, it is like the chip is not even part of the circuit

The address decoding circuit:

Great! Since we have the tri-state devices this solves our problem of multiple devices attached to the

same bus. All we have to do is ensure the devices are always in a disabled (high impedance) state, and

only enable the chip that we wish to receive information from.

Now we just need a way (a circuit) to determine which chip whould be turned ON or enabled. This

circuit needs to read some type of information (the address bus) and then enable the chip that is

responsible for that address of memory. This circuit is called the address decoding circuit and is on the

centipede-schematic-1.jpg image it is the circuit contained in the blue rectangle.

Exploring the address decoder circuit:

It is critical that the address decoding circuit works, other wise the system will not function properly.

Some (most) systems have self test modes that will check RAM and ROM to determine whether they are

working. However, if the address decoding circuit does not work, the right RAMS and ROMs will not be

accessed at the right times and the self test can provide in-accurate results, they may lead to the system

reporting RAMS or ROMS that do not work. Therefore before taking the results of a self test that states a

bad RAM or ROM, you want to verify the operation of the address decoding circuit. Often if the RAM or

ROM that is stated bad is the FIRST RAM or ROM the system checks, there is a decent chance that the

address decoding circuit is bad.

Let’s explore the address decoding circuit. Look at the centipede-schematic-1.jpg image. Find the chip in

the address decoding circuit labeled with a green D. Notice this chip is labeled “J2 LS139”. This means

the chip referenced here is the chip on the board in position J2, and that chip is a 74LS139. Now it’s time

to use google to find a datasheet for the 74LS139 chip.

Tri-State device:

A device that has 3 states, the normal

logic states of HIGH and LOW, and a

third state called high impedance that

effectively disables the chip and

makes it seem like it’s not even in the

circuit or on the bus at all.

Copyright 2013 Paladin Group, LLC Brian Brzezicki

This chip is a 2-> 4 line demultiplexer the 74LS139 chip actually contains 2, 2->4 line demultiplexers, the

portion of the address decoder shown by D only uses one of those two demultiplexers. Now what is a

demultiplexer? Well the key to understanding it is the look at the state table (or function table) which

defines what the chip will output based on the different possible inputs. The state tables is shown

below.

If you look at the “INPUT” side there are 3 different inputs pins. Pin 15 on J2 is the enable line and it

corresponds to input G on the state table. Pin 14 corresponds to A, and pin 13 to B. The output side of

the table shows you all the different possible outputs (Y0-Y3) depending on the different inputs of (A,B

and G). By looking at the table you see that if the enable pin (G or pin 15 @ J2) is logic state HIGH (H)

(disabled) then ALL of the outputs are logic state HIGH (H) REGARDLESS of the inputs of A and B. So in

effect when this chip is disabled all of its outputs are HIGH.

However when the chip is enabled (G is LOW) the chip will output a LOW signal on EXACTLY one output

line, all others lines will be output HIGH. The output line that will be LOW will be determined by the

input of A and B. This chip effectively reads the inputs (which are ultimately run back to certain lines on

the address bus, and based on which lines are active it will activate (send low) EXACTLY one of the

output lines or NONE of the output lines. The function of this chip is actually to turn on 1 of the 4 ROMS

on the Centipede PCB board (or ensure all ROMS are actually turned OFF, if the chip is disabled).

Let’s look at the schematic again, you’ll see the outputs (the right side of the chip) are labled ROM0,

ROM1, ROM2, ROM3 (each with a line over them). These ultimately are the ROM select chips that are

run to the individual ROMS “chip selects/enable” input. The line over the ROM0, ROM1, ROM2, ROM3

specifies an inverted condition, that is the ROM is enabled when the line is at logic level LOW rather

than enabled on logic level HIGH.

Copyright 2013 Paladin Group, LLC Brian Brzezicki

So putting this all together we see that if the 74LS139 at J2 is disabled NO ROMS will be enabled.

Whether J2 is enabled depends on the input to G (pin 15), this is actually the output of a few more chips,

but for the purposes of this exercise all we need to know is that J2 will be enabled ONLY if the CPU is

trying to READ data AND the address bus line 13 is logic state HIGH (binary 1).

Now when J2 is enabled then EXACTLY one of the ROMs will be enabled based on the inputs A (pin 14)

and B (pin 13). Pin A runs directly to Address bus line 11, and pin B runs to address bus line 12.

Therefore which ROM chip is enabled depends on the combination of address bus lines 11 and 12.

We can take this knowledge to try to understand when exactly each ROM chip will be activated. We

know for ANY ROM to be active adresss bus 13 MUST be 1, then the ROM chip activated will be based

on address bus lines 12 and 11.

Let’s create a chart to see the different combinations of A, and B which the G being HIGH, and map

them to the respective address lines. We will ignore AB15 and AB14 as on Centipede those lines actually

are not even used.

G
(15)

B
(13)

A
(14)

AB13 AB12 AB11 AB10 AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0 ROM

1 0 0 0

1 0 1 1

1 1 0 2

1 1 1 3

We now start to get a picture of what addresses will activate each ROM. You see the only 3 address lines

that are needed to select a ROM are AB13, AB12, AB11. These alone determine the ROM selected, the

other address lines can be either 0 or 1 for any position. From that however we can figure out what

ranges of memory each ROM responsed to. For example for ROM 0 to be active, AB13 MUST =1, AB12

MUST =0, and AB11 MUST=0 all other address lines are irrelevant. So the smallest address that ROM 0

would respond to are the addresses where all the lines AB0 – AB10 are 0

G
(15)

B
(13)

A
(14)

AB13 AB12 AB11 AB10 AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0 ROM

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

If we convert this into HEX we see that is address 0x2000. Now the highest address the ROM will

respond to is where all the other address bits are 1’s

G
(15)

B
(13)

A
(14)

AB13 AB12 AB11 AB10 AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0 ROM

1 0 0 1 1 1 1 1 1 1 1 1 1 1 0

Copyright 2013 Paladin Group, LLC Brian Brzezicki

This number in hex is 0x27FF. So the range of addresses that ROM0 responds to are 0x2000-0x27FF.

Repeat the process for each ROM

Start Address for ROM1

G
(15)

B
(13)

A
(14)

AB13 AB12 AB11 AB10 AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0 ROM

1 0 1 1

ROM1 Hex Start Address = __________________________________

End Address for ROM1

G
(15)

B
(13)

A
(14)

AB13 AB12 AB11 AB10 AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0 ROM

1 0 1 1

ROM1 Hex End Address = __________________________________

Start Address for ROM2

G
(15)

B
(13)

A
(14)

AB13 AB12 AB11 AB10 AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0 ROM

1 1 0 2

ROM2 Hex Start Address = __________________________________

End Address for ROM2

G
(15)

B
(13)

A
(14)

AB13 AB12 AB11 AB10 AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0 ROM

1 1 0 2

ROM2 Hex End Address = __________________________________

Copyright 2013 Paladin Group, LLC Brian Brzezicki

Start Address for ROM3

G
(15)

B
(13)

A
(14)

AB13 AB12 AB11 AB10 AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0 ROM

1 1 1 3

ROM3 Hex Start Address = __________________________________

End Address for ROM3

G
(15)

B
(13)

A
(14)

AB13 AB12 AB11 AB10 AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0 ROM

1 1 1 3

ROM3 Hex End Address = __________________________________

You should find that that the following ROMS respond (or are mapped) into the following addresses.

ROM Start Address End Address

ROM0 (D1) 0x2000 0x27FF

ROM1 (E1) 0x2800 0x2FFF

ROM2 (F/H1) 0x3000 0x37FF

ROM3 (J1) 0x3800 0x3FFF

Copyright 2013 Paladin Group, LLC Brian Brzezicki

Exercise: Using the Fluke 9010A and the logic probe to see the address decoding circuit work

In this exercise you will use the Fluke 9010A to read different addresses from the various ROMs on the

Centipede PCB board. You will use the logic probe to see the changes to the output of J2 as different

memory ranges are selected.

1. Setup the fluke and the logic probe properly (you should know how to do this correctly by now,

but remember power the Fluke on FIRST before the Centipede PCB)

2. In the Fluke hit the “Setup” Button, choose “more” until “Active Line Force” is selected, choose

“No”

3. Hit “Bus Test” to make sure all is working OK.

4. On the Fluke, hit the “read” button, choose the address 0x0000, and it “Loop”. From what you

should have learned NO ROMs are in this range so NONE of the ROM selects should be active

(LOW) they all should be high. (You’ll probalby notice that ROM3 is transistioning, ignore that

for now)

5. Put the tip of the logic probe on each ROM selection output of J2 (pins 9,10,11,12) note they all

are HIGH which is disable. You may also note that on the Atari Centipede PCB each ROM chip

has it’s own ROM select test point near the ROM, you may want to measure it here instead of

the action pins on J2. (If you get confusing results from ROM3 select, ignore it for now)

6. Now on the Fluke request a memory address related to ROM0, let’s “read” address 0x2000.

Don’t forget to hit the “Loop” button to make the read continuous. Put the tip of the logic probe

to the ROM0 select (pin 12 on J2, or use the ROM0 test point near D1).

7. Notice thate ROM0 select pin is “flipping” signifying that the ROM0 is being enabled. (it is

enabled on LOW)

8. Test the ROM select pins for ROM1, ROM2. Notice they are still high.

9. Now on the Fluke request a memory address related to ROM1, let’s “read” address 0x2800.

Don’t forget to hit the “Loop” button to make the read continuous. Put the tip of the logic probe

to the ROM1 select (pin 11 on J2, or use the ROM1 test point near E1).

10. Notice thate ROM1 select pin is “flipping” signifying that the ROM1 is being enabled. (it is

enabled on LOW)

11. Test the ROM select pins for ROM0, ROM2. Notice they are still high. Do not test the select for

ROM3 yet.

12. Test the ROM select pin for ROM3, this one is a little more interesting. On Centipede it is

actually electrically hard coded to always be ON (low) except when it should be specifically off.

(reading from another RAM or ROM etc, then it will go off (high). If you use a logic probe you

will actually see a transition. However this transition is it actually going off, when the RAM is

being read at 0x0000. From the perspective of the logic probe it’s hard to tell the difference, you

just see the transistion. If you use an oscilliscope you can see the ROM3 line transitions from

high (off) as the RAM transistions low (on)

13. Try other addresses to verify that the ROMs are being enabled or disabled as you’d expect.

Copyright 2013 Paladin Group, LLC Brian Brzezicki

Challenge:

Now that you’ve learned this, look at chip H3 (74LS42) in the address decoding circuit. This chip is

responsible for activating other components such as playfield RAM, the WATCHDOG and the POKEY.

Based on what you learned above, try to determine what hex addresses activate the POKEY chip via H3.

Use the fluke and the logic probe to verify your results. (answer at end of page)

Answer to challenge

The POKEY is enabled via H3 when the following address bits are set as follows ("- " is either 0 or 1)

AB13 AB12 AB11 AB10 AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0

0 1 0 0 - - - - - - - - - -

or hex addresses

0x1000 (when address AB0 - AB9 = 0) through 0x10FF (when address bits AB0-AB9 = 1)

Special thanks to KLOV users TROXEL and BARITONOMARCHETTO for reading through this guide, doing

the exercises, catching many many typos, and generally making this a better document.

