Understanding SystemV startup

Traditionally Unix systems have used the ATT
SystemV initialization mechanism

In System V init, there is a concept called a
runlevel. The runlevel defines what services
should start (or stop) upon entering or leaving
the run level.

runlevels

Different versions of Unix define the runlevels
differently. In Red Hat Linux the runlevels are
defined as below.

runlevel O - system shutdown

runlevel 1 - single user mode

runlevel 2 — multiuser mode without networking
runlevel 3 — multiuser mode with networking
runlevel 4 — unused

runlevel 5 — multiuser mode with networking and graphics
(X11)

runlevel 6 — system reboot

Services and init scripts

Each service or sub system has a shell script
that is responsible to start and stop the
service. These scripts live in a directory called
[etc/init.d

[root@paladin ~]# ls /Jetc/rc.d/init.d

abrt-ccpp haldaemon netfs rpcsvecgssd
abrtd ELN network rsyslog
abrt-oops htcacheclean NetworkManager sandbox
acpid httpd nfs saslauthd
atd ip6tables nfslock single
auditd iptables ntpd smartd

Running the scripts

Each of these script can be run directly
provided with an argument to start, stop, or
restart the service.

[root@paladin ~]# /fetc/rc.d/init.d/sshd stop
Stopping sshd:

[root@paladin ~]# Jetc/rc.d/init.d/sshd start
Starting sshd:

Most services support other actions such as
reload or status

[r

1n
rc

The directory /etc/rc.d contains a directory
for each different runlevel on the system.
Each directory will files or links to define what
should start up or shutdown when entering
that runlevel.

oot@paladin ~]# ls /etc/rc.d
it.d Jrco.d rc2.d rcd4.d rcé6.d rc.sysinit
rcl.d rc3.d rc5.d | rc.local

The directory /etc/rc.d/rcX.d contains all of the
startup scripts for each service that should be
started or stopped at this runlevel.

These scripts are usually simply symbolic links *
back to the scripts in Jetc/rc.d/init.d. Since there
are multiple runlevels and services, this ensures
the scripts only have to be located in one place.

[root@paladin ~]# 1s -1 Jetc/rc.d/rc5.d
total @

Lrwxrwxrwx. 1 root root 20 Aug 26 16:32 K@lcertmonger -= ../init.d/certmonger
Lrwxrwxrwx. 1 root root 23 Aug 26 16:34 KO@lmatahari-host -= ../init.d/matahari-h
ost

.{ * Note: Some versions of Unix use hard links rather than symbolic links

script naming

Each link (or file) in /etc/rcX.d is named based
on the following format

SH##service_name
or
K##service_name

Example:
S55sshd

Breaking down the script names

The first 3 characters in the script name defines much of the
behavior of the service at this runlevel.
The first character in the filename determines whether the service
should be started or stopped upon entering the runlevel.

K = stop the service

S = start the service
The next two characters are numbers and determine the order
(lowest to highest) that the service will be started or stopped.
init will first stop all services starting with K, in the defined order,
before starting all services starting with S.
If one service needs to be started (or stopped) before another, this
is where the number is useful, to determine dependence

Example:
S55sshd will start AFTER S10network

[etc/rc.d/rcis the script that actually runs the
scripts. It is started by init and given the
desired runlevel to enter as a command line
argument. For each script in the
[etc/rc.d/rcX.d directory it will call

script start or script stop
based on the filename.

The startup loop In Jetc/rc.d/rc

Now run the START scripts.
for 1 in /etc/rc$runlevel.d/S* ; do

Check 1if the subsystem is already up.
subsys=%{i#/etc/rcsrunlevel.d/5?7}

[-f /var/lock/subsys/%subsys] && continue

[-T /var/lock/subsys/$subsys.init] && continue
check runlevel "$i" || continue

IT we're in confirmation mode, get user confirmation
if ["¢do confirm" = "yes"]; then
confirm $subsys
rc=%7?
if ["$rc" = "1"]; then
continue
elif ["$rc" = "2"]; then
do confirm="no"
fi
fi

update boot stage "S$subsys"
Bring the subsystem up.
[-n "SUPSTART"] && initctl emit --quiet starting JOB=%subsys
if ["$subsys" = "halt" -o "$subsys" = "reboot"]; then
export LC ALL=C
exec %1 start

fi
$1 start

Starting up your own processes

Since the scripts in /etc/rc.d/init.d are simply
shell scripts, you can create you own to
startup your own programs at boot.

Just make sure to create a startup script in
[etc/rc.d/init.d that response to a start and
stop argument.

Then make the appropriate links in
[etc/rc.d/rcX.d pointing back to your script in
[etc/init.d

[etc/inittab

The main configuration file for the init program
itself is /etc/inittab. Processes can be configured
to start directly in Jetc/inittab. In fact the script
that starts all the System V scripts (/etc/rc.d/rc)
itself is configured in fetc/inittab.

:0:walt:/etc/rc.
:1:walit:/etc/rc.
:2:walt:/etc/rc.
:3:walt:/etc/rc.
:d:walt: fetc/rc.
:5:walt:/etc/rc.
:6:walt:/etc/rc.

| —

.
13
14
e

LN & Wk

()|
on

[etc/inittab format

The configuration file [etc/inittab defines
processes that init should start and manage.
The format of this text file is 1 line per process
with multiple fields separated by a colon (:).
The fields are defined below

1-4 characters The run levels How to manage the The path to the
which uniquely where the process process process including
identify this line should be started any command line
item. arguments

Moving forward

Though init has been used for decades, it
shows it's age. There have been different
attempts to replace init. (upstart, systemd
etc) Even distributions that use these new
methods often follow the SystemV structure
for backwards compatibility.

Knowledge
is cool...

